v-MP2010MOB SD Video Codec Integrated Solution

The videantis v-MP2010MOB is an integrated video codec solution comprising both multi-standard stream processing and video processing units in a standalone subsystem with minimum load on the host CPU.

Multi-standard decoding up to SD resolution is supported for a wide and extensible range of video standards like H. 264 BP, MPEG-4 SP/ASP (DivX), WMV9/VC-1 SP/ MP, and Google VP8 / WebM Project with upgradeability to further standards on the same device as needed.

For multi-standard video encoding like H. 264 BP, MPEG-4 SP/ASP, and H.263, the v-MP2010MOB supports an enhanced set of compression tools to achieve high video quality at reduced bitrates.

Still image JPEG encoding and decoding is supported at a pixel rate up to $25 \mathrm{MPixel} / \mathrm{s}$. Furthermore, a wide range of value-add image and video processing features can be performed in parallel to decoding or encoding.

The v-MP2010MOB is available as a drop-in solution proven in real system environments and optimized to tolerate long memory access latencies of real-world systems. Extensive conformance testing has been performed to assure high product quality and full customer satisfaction. Through its field upgradeability in silicon, the v-MP2010MOB provides a future-proof solution for extended product lifetimes through the addition of further standards and value-add features simply by firmware update.

- Integrated solution
 (Minimum load on host CPU
 Ultra low power for extended battery life
 V Very small area footprint
 \% De- \& encoding on single footprint

(Field-upgradeable codecs and features

Features and Benefits

Integrated solution

> v-MP2000M video engine + v-SP1200 multistandard stream unit
$>$ Minimum load on host CPU

Multi-standard video codecs

> H.264/AVC, MVC
> MPEG-4, DivX, XviD, H.263, Flash (Sorenson)
> WMV-9/VC-1, RealVideo 8/9/10
> Google VP8 / WebM Project, On2 VP6
> MPEG-2, MPEG-1
> JPEG still image decode \& encode up to 25MPixel/s
> Extensible to further standards on same silicon, e.g., H.265/HEVC

Value-add image/video processing features
> Image enhancements, rotation, scaling
$>$ Graphic overlays, blending, picture in picture
> Deinterlacing, denoising, deblocking
> Color conversion (RGB/YUV, YUV422/420)
> Performed in parallel to decoding

Very small silicon area footprint

$>190 \mathrm{~kg}$ ates core logic +76 kB memories
> Target technologies: $90 \mathrm{~nm} . . .22 \mathrm{~nm}$
$>0.7 \mathrm{~mm}^{2}$ silicon area in 40 nm technology incl. sync. bus interfaces \& all memories

Low frequency requirements, ultra low power consumption for extended battery life
> Reduced switching activity for ultra low power consumption through optimized architecture

(Feature phone, smart phone

- Mobile Internet device (MID)
§ Personal navigation device (PND)
\% Car infotainment
₹ Portable media player (PMP)
v Mobile TV, DVB-H, DMB
v Streaming video

Easy system integration
> SoC bus interface options: 32/64 bit, synchronous/asynchronous
> AMBA AHB, AXI, OCP, others

Short time to market \& future proofness

> Reliable core, pre-verified in silicon
$>$ Various FPGA prototyping platforms supported
$>$ Field-upgradeable features and codecs by firmware download

Ready to use

> Extensive conformance testing
> OpenMAX IL 1.1 support for seamless integration into mobile environments

Complete solution

> Comprehensive applications suite, fully optimized for performance and resource usage
$>$ Fully documented API in C source code for codecs and features
> Example integration in application framework
> One-stop offer including full integration support options

